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ABSTRACT 

In this research, it is suggested an analytical study to determine the inter-laminar shearing stress between every 

two layers of the laminated composite plates, types; symmetrical and un-symmetrical, cross ply and angle ply laminated 

plates. 

To determine the value of inter-laminated shearing stress, firstly: it must find the stress in every layer of the 

laminated plates by determination the displacements for the plates. So that, it is suggested a solution for the laminated 

plates to solve the equation of motion for the composite plates by using the First-Order Shear Deformation Theory (FSDT). 

Also the theory of Navier solutions is used to find the behavior of the plates in two dimensions. Then, by using model 

analysis method, the equation of motion for the composite plate is solved to determine the values of the displacements as a 

function of time due to the effect of a dynamical load. As a result, the stress in every layer of the plate layers is determined 

and then, the inter-laminated shearing stress is found. 

The results which obtained are: the frequency, response, and the stress in every layer of the plate layers. Also, it is 

obtained the inter-laminated shearing stress under effect of the dynamical loads by the effect of plate side-to-thickness 

ratio, aspect ratio, material orthotropy, and lamination scheme, number of layer of laminated plate. Finally, variable 

boundary conditions for the plates are studied. 

The results of the displacements are compared with those found numerically (FEM) by ANSYS program. It is 

found there is a good agreement between the analytical and numerical results. In addition, the results are compared with 

another results for other research. 
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INTRODUCTION 

The inter-laminar shear stiffness relative to the in-plane properties of a fiber reinforced composite is typically 

much smaller than for homogeneous materials. The reduced stiffness means that transverse shear effects are significant for 

much larger width-to-thickness ratios than for metal plates. 

M. Witt and K. Sobczyk [6], Presented the response of laminated plates in cylindrical bending to random 

dynamic loading. The formulate for correlation function (and variance) of vertical displacement of a plate are obtained and 

the numerical results are provided for the assumed form of the correlation function of a random loading. The effect of the 

fiber orientation and the correlation parameter of the external loading on the mean-square value of vertical displacement 

are shown graphically. The results are compared with those obtained using the classical Kirchhoff and Mindlin theory for 

homogeneous plates. 
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A. K. Nayak et al. [2], Presented the deals with the transient response of initially stressed composite sandwich 

plates under time dependent sine, triangular and explosive blast loading. Formulations for a family of assumed strain finite 

element formulations are developed on the basis of the first-order shear deformation theory with a priori shear correction 

factors. The developed finite elements contain three displacements and two rotations of the normals about the plate's    

mid-plane. New results are presented to examine the effects of alternative loadings, boundary conditions and plate 

geometries. 

ZaferKazanc [14], Presented the dynamic response of orthotropic sandwich composite plates impacted by     

time-dependent external blast pulses is studied by use of numerical techniques. The theory is based on classical sandwich 

plate theory including the large deformation effects, such as geometric non-linearities, in-plane stiffness and inertias, and 

shear deformation. The finite difference method is applied to solve the system of coupled non-linear equations. The results 

of theoretical analysis are obtained and compared with ANSYS results. Effects of the face sheet number, as well as those 

related to the ply-thickness, core thickness, geometrical non-linearities, and of the aspect ratio are investigated. Detailed 

analyses of the influence of different type of pressure pulses on dynamic response are carried out. 

W. L. Yin [12], Presented a variational method involving Lekhnitskii's stress functions is used to determine the 

inter-laminar stresses in a multilayered strip of laminate subjected to arbitrary combinations of axial extension, bending, 

and twisting loads. The stress functions in each layer are approximated by polynomial functions of the thickness 

coordinate. The equilibrium equations, the traction-free boundary conditions, and the continuity conditions of the        

inter-laminar stresses are exactly satisfied in the present analysis, while the compatibility equations and the continuity of 

the displacements across the interfaces are enforced in an averaged sense by applying the principle of complementary 

virtual work.  

W. L. Yin [13], also examined, the eigenvalue problem associated with the determination of the inter-laminar 

stresses in a laminated strip, and physical interpretations are given to the (constant) particular solutions and the 

complementary solutions of the problem. The case of symmetric laminates is considered in detail, and variational solutions 

are computed for four-layer, symmetric, cross-ply, and angle-ply laminates subjected to the three fundamental types of 

strain loads. Solutions based on two sets of stress functions with polynomial expansions of different degrees are compared 

with each other and with existing solutions to assess the accuracy. The interface values of the stress functions and their 

derivatives are identified as the resultant peeling and shearing forces over end intervals of the interface. 

THE SUGGESTED ANALYTICAL SOLUTION 

Equivalent Single-Layer Theories (ESL) 

In the “ESL” theories, the displacements or stresses are expanded as a linear combination of the thickness 

coordinate and undetermined functions of position in the reference surface. 

∅𝑖 𝑥, 𝑦, 𝑧 =  ∅𝑗
𝑖  𝑥, 𝑦 . 𝑍𝑗𝑁𝑖

𝑗=0        𝑓𝑜𝑟  𝑖 = 1,2,3             (1) 

Where, Niare the number of terms in the expansion. ij can be either displacements or stresses. 

 Classical Laminated Plates Theory (CLPT) 

The displacement filed of laminated plates are, J. S. Rao [5], 
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Where (u,v,w) are the displacements, along the coordinate lines, of a material point on the xy-plane. 

The equations of motion are, 
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Where,𝐼1 =   𝜌(𝑘) 𝑑𝑧
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1                (4) 


(K) 

being the material density of K
th

 layer. 

The laminate constitutive equations can be expressed in the form, 
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Where,  

x=u,x  , y=v,y  , xy=u,y+v,x , Kx=w,xx, Ky=-w,yy , Kxy=-2 w,xy           (6) 

The Aij, Bij, Dij  (i,j =1,2,6 ) are the respective inplane, bending –inplane coupling, and bending or twisting, 

respectively, 

 𝐴, 𝐵, 𝐷 =   𝑄
(𝑘)

 1, 𝑍, 𝑍2  𝑑𝑧
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1               (7) 

Here Zm denotes the distance from the mid-plane to the lower surface of the K
th

 layer. 

Equations (3) and (5) can be conveniently expressed in the operator form as, 

        MfL
               (8) 

Where, M11 =I1 , M12=0 , M13=-I2 dx , M22=I1 ,M23=-I2dy  , M33=I1 –I3 (dxx+dyy) . 

[∆]=[u   v   w]
T
 ,[f]=[0   0   q(x,y,t)]

T
. 

L11=A11 dxx +2 A16dxy +A66dyy , L12=A12dxy +A16 dxx +A26dyy +A66dxy , 

L13=-B11 dxxx -B12dxyy -3 B16dxxy-  B26dyyy -2 B66dxyy  ,  

L22=2A26dxy +A66 dxx +A22dyy , 

L23=-B16 dxxx –3 B26dxyy –2B66dxxy –B12dxxy –B22dyyy , 

L33= -D11dxxxx -2 D12dxxyy –4 D16dxxxy–4 D26dxyyy –4 D66dxxyy –D22dyyyy .          (9) 

 First-Order Shear Deformation Theory (FSDT) 

This theory accounts for linear variation of in-plane displacements through the thickness, 

u1(x,y,z,t)=u(x,y,t)+Z x(x,y,t) , u2(x,y,z,t)=v(x,y,t)+Z y(x,y,t), u3(x,y,z,t)=w(x,y,t) .      (10) 

Where,  
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t is the time; u1 , u2 , u3  are the displacements in x,y,z directions, respectively; and x and y are the slopes in the 

xy and yz planes due to bending only. 

The equations of motion are: 

Nx,x+Nxy,y=I1u,tt +I2x,tt 

Nxy,x+Ny,y=I1v,tt+ I2y,tt 

Nxz,x+Nyz,y+q(x,y,t)=I1w,tt 

Mx,x+Mxy,y-Nxz=I2u,tt +I3x,tt 

Mxy,x+My,y- Nyz =I2v,tt+ I3y,tt             (11) 

Where, 

 𝐼1 , 𝐼2 , 𝐼3 =   𝜌(𝑘) 1, 𝑍, 𝑍2  𝑑𝑧
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1 )           (12) 

The laminated constitutive equations can be expressed in the form, 
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Where, 

x=u,x , y=v,y , xy=u,y+v,x , yz=y+w,y , xz=x+w,x ,Kx=x,x , Ky=y,y , Kxy=x,y +y,x       (14) 

K45, K44 and K55 are correction factors. 

Equations (11) and (13) can be conveniently expressed in the operator form as, 

        MfL
              (15) 

Where, [∆] = [u   v   w   x   y ]
T
, [F]=[0   0   q(x,y,t)]

T
 

And, M11=M22=M33 =I1, M44 =M55 =I3, M14 =M25=I2, and other terms of Mίj=0 (for ί≠j). 

And, L11=A11dxx+2A16dxy+A66dyy, L12=A12dxy+A16dxx+A26dyy+A66dxy, L13=0,  

L14=B11dxx+2B16dxy+B66dyy, L15=B12dxy+B16dxx+B26dyy+B66dxy 

L22=2A26dxy+A66dxx+A22dyy, L23=0, L24=B16dxx+B66dxy+B12dxy+B26dyy,  

L25=2B26dxy+B66dxx+B22dyy, L33=2A45dxy+A55dxx, L34=A55dx+A45dy, 

L35=A45dx+A44dy, L44=D11dxx+2D16dxy+D66dyy-A55, 

L45=D12dxy+D16dxx+D26dyy+D66dxy-A45, L55=2D26dxy+D66dxx+D22dyy-A44.        (16) 

Actual Displacements for Simply-Supported Laminated Plate 

 Cross-Ply Laminated Plate 

The general actual displacements for cross-ply laminated plate are, Bose and Reddy [3], 
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 Angle-Ply Laminated Plate 

The general actual displacements for Angle-ply laminated plate are, 
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General Solution for Equations of Motion 

The general equations of motion are, 

        MfL
              (19) 

By substituting the actual displacements, equation (17) or (18), into equation (19), the by premultiplying the result 

by [  (x,y)]
T
 and integral of xy, gives, 

       FKM                (20) 

Where,
   Tyxvyxuyx ..........),(),(),( 

            (21) 

And [M] and [K] are mass and stiffness matrices, respectively; [∆(t)] and [F] are displacement of time and load 

vector, respectively. 

Cross-Ply Laminated Plate 

By using, depended on theory using, equation (17) into equation (19), gives, 

          FKM                (22) 

Where, [M], [K], [∆(t)] and [F] as: 
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 FSDT 

K11=α
2
A11+β

2
A66, K12=αβ (A12+A66), K13=0, K14=α

2
B11, K15=0,  

K22=α
2
A66+β

2
A22, K23=0, K24=0, K25=β

2
B22, K33=α

2
A55+β

2
A44, K34=αA55,  

K35=βA44, K44=α
2
D11+β

2
D66+A55, K45=αβ(D12+D66), K55=α

2
D66+β

2
D22+A44. 

And, [M] as in equation (16), [∆(t)]=[u(t)   v(t)   w(t)   x(t)   y(t)]
T
,  TtqtF 00)(00)(  . 

The [M] and [K] matrix for symmetric cross-ply are as for anti symmetric cross-ply for subjected (Bij= Eij=Gij=0). 

Angle-Ply Laminated Plate 

By suing, depended at theory using, equation (18) in to equation (19), gives, 

       FKM                (23) 

Where, [M], [K], [∆(t)] and [F] as: 

 CLPT 
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And, M11=M22=M33=I1, Mij=0 for i≠j; [∆(t)]=[u(t)   v(t)   w(t)]
T
;    TtqF )(00 . 

 FSDT 
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D22+A44. And, [F] and [∆(t)] as in equation (40). 

And, M11=M22=M33=I1, M44=M55=I3, Mij=0 for i≠j. 

When external forces act on a multi-degree of freedom system undergoes forced vibration. For a system with (n) 

coordinates or degrees of freedom, the governing equations of motion are a set of (n) coupled ordinary differential 

equations of second order. The solution of these equations becomes more complex when the degree of freedom of the 

system (n) is large and/or when the forcing functions are non-periodic. In such cases, a more convenient method known as 

“Modal analysis” can be used to solve the problem, SingiresuS. Rao [11]. 

Inter-Laminar Shear Stresses 

Inter-laminar stresses are one of the failure mechanisms uniquely characteristic of composite materials. The free 

body diagram of each layer of a laminate shown in Figure 1, Robert M. Jones [9], study useful in understanding the 

physical mechanism of shear transfer between layers.  

Then, the fact that xz must be zero on a free edge means that the couple caused by xz acting along the other edges 

of the free body must be reacted. The only possible reacting couple to satisfy moment equilibrium is caused by xz acting 

on part of the lower face of the layers at the interface with the next layer. 
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Figure 1: Inter-Laminar Shear Stress Mechanism 

In the laminated plates, no account is taken of inter-laminar stresses such as z ,xz , and yz which are shown in 

Figure 2, Robert M. Jones [9]. 

 

Figure 2: Laminate Geometry and Stresses 

The inter-laminar shear stresses are determined from the first two equations of equilibrium, J. S. Rao [5], 
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To solve equation (24), the stresses should be evaluated depending upon the determined of displacements by using 

dynamic analysis. 

Integrating equations (24) with respect to z and using equation of the stresses in kth layer of (CLPT),                   

M. Al_Waily [7], gives, 
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Where u(x,y,t), v(x,y,t), w(x,y,t) are evaluated by dynamic analysis of composite plate for (CLPT). And (x,y), 

g(x,y) are the functions of integration to be determined from the inter laminar continuity conditions for the intermediate 

layers and-zero shear traction condition on the top and bottom surfaces. 

Integral the equations (24) with respect to z and using equation of the stresses in k
th

 layer of (FSDT),                   

M. Al_Waily [7], gives, 
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(26)  

Where, u(x,y,t), v(x,y,t), w(x,y,t), x(x,y,t), y(x,y,t) are evaluated by dynamic analysis of composite plate for 

(FSDT). 

The computer programs designed in this work are concerned with solving the dynamic problems for 

displacements, stresses in each layers x; y; xy, and inter laminar stresses between each two layers of composite 

laminated plates using any theory for laminated plates. The computer programs constructed herein are coded in        

“Fortran Power Station 4.0” language. The program defined the displacement in x, y, and z-direction of plates and the 

stresses of plates,as a faction of x, y, and time, then evaluated the inter laminar shear stresses between each two layers of 

laminated plates, solving by using of (FSDT).The input required of program are, the orthotropic properties of lamina                            

(E1, E2, G12, and 12) and, the dimensions of laminated plate (a, b, and h). And,  the output of program are, displacement of 

laminated plate as a function of x; y; t, (u, v, w, x, and y), stresses of laminated plate in each layers as a function of x; y; 

z; t, (x, y, xy), and inter laminar shear stress between each two layers of laminated plate as a function of x; y; z; and       

t, (xz, yz).   

RESULTS AND DISCUSSIONS 

The case study discussed here is a un-stiffened laminated simple supported plate Figure 3. with dimensions and 

material properties give below using the first-order shear deformation theory (FSDT) and applying the suggested analytical 

solution and finite element method by used of (ANSYS). 

 

Figure 3: Dimensions and Directions of Un-Stiffened Laminated Plate 
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COMPARISON RESULTS 

Figures 4 and 5 shows a comparison of the present work solutions by Analytical and finite elements method with 

the numerical solution of Reddy, J. N. [10]. 

Figure 4, shows a comparison of the present work solutions by Analytical and finite elements method with the 

numerical solution of Reddy, J. N. [10] they are given for two layer simply supported cross-ply laminated plate subjected 

to sinusoidal Pulse loading q(x,y,t)=P(x,y), for, P(x,y)=qo sin( x/a) sin( y/b) , qo=10 N/cm
2
.  

And the properties and dimensions of plate, are, E2=2.1*10
6
 N/cm

2
, E1/E2=25, ν=0.25, G12=G13=G23=0.5E2, ρ=800 

Kg/m
3
, a=b=25 cm, h=5 cm. 

Figure 5 shows a comparison of the present work with the numerical solution of Reddy, J. N. [10] they are given 

for simply supported two layer cross-ply laminated plate subjected to sinusoidal Pulse loading q(x,y,t)=P(x,y), for, 

P(x,y)=qo sin( x/a)sin( y/b) ,qo=10 N/cm
2
 , 

And the properties and dimensions of plate, are, E2=2.1*10
6
 N/cm

2
, E1/E2=25, ν=0.25, G12=G13=G23=0.5E2,  

ρ=800 Kg/m
3
, a=b=25 cm , h=1 cm. 

Frequency Results 

Figures 6, 7, 8, and 9 shows the natural frequency of laminated plate with properties and dimensions as,              

A. A. Khdeir and Reddy [1], E1=130.8 Gpa, E2=10.6 Gpa, 12=0.25, G12=G13=6 Gpa, G23=3.4 Gpa, a=1 m, b=1 m,           

h=0.02 m 

Figure 6.shows the effect of number of layer on the natural frequency for different aspect ratio, for a=1 m, of  

anti-symmetric cross-ply simply supported laminated plates. The figure shows that the natural frequency of plates increases 

with increasing the number of layers, and the aspect ratio. The increases of frequency are 32.2%, 3.85%, 1.265%, 0.57% 

for increasing layers (2 to 4), (4 to 6), (6 to8), (8 to 10) respectively of aspect ratio a/b=2 and 49.12%, 184.54% for 

increase aspect ratio (0.5 to 1), (1 to 2) respectively for number of layer N=4.   

Figure 7.shows the effect of fiber orientation on the natural frequency for different number of layer of              

anti-symmetric angle-ply simply supported laminated plates. The figure shows that the natural frequency of plates increase 

with increasing the number of layers and the fiber orientation to optimum angle (=45
o
). The increases of frequency with 

increasing the angle  form 0o to 45o are 19.7%, 26.34% for increase layers (2 to 4), (4 to 8) respectively. 

Figure 8.shows the effect of fiber orientation on the natural frequency for different modulus ratio (E1/E2) for four 

layers of anti-symmetric angle-ply simply supported laminated plates. The figure shows that the natural frequency of plates 

increase with increasing of the modulus ratio (E1/E2). The increase of frequency are 35.15%, 20.16% for increase E1/E2 (10 

to 20), (20 to 30) respectively for =45
o
. 

Figure 9.shows the effect of fiber orientation on the natural frequency for different length-to-thickness ratio (a/h), 

for a=1 m, for four layers of anti-symmetric angle-ply simply supported laminated plates. The figure shows that the natural 

frequency of plates increases with decreasing (a/h) ratio, and increasing the thickness h of plates. The increase of frequency 

are 96.23%, 23.3% for decreasing a/h (50 to 25), (25 to 20) respectively for =45
o
. 

Deflection Results 

Figures 10 and 11, Shows the central deflection  of laminated plate with different boundary condition of plate with 



54                                                                                                                                                         Muhsin J. Jweeg & Muhannad Al-Waily 

properties and dimensions as, A. A. Khdeir and Reddy [1], E1=130.8 Gpa, E2=10.6 Gpa, G12=G13=6 Gpa, G23=3.4 Gpa, 

12=0.25, a=1 m, b=1 m, h=0.02 m. 

Figure 10, shows the central deflection for different boundary conditions ,simply supported, clamped,                   

(simply supported at (x=0,a) and clamped at (y=0,b)), (free edges at (x=0,a) and simply supported at (y=0,b)), free edges at 

(x=0,a) and clamped at (y=0,b), simply supported at ends of plate ((x=0,y=0), (x=a, y=0), (x=0, y=b), (x=a, y=b)), and 

clamped at ends of plate ((x=0,y=0), (x=a, y=0), (x=0, y=b), (x=a, y=b)) subjected to sinusoidal ramp loading, solution by 

(F.E.M). From the results, the maximum deflection of simply supported plate at ((x=0,y=0), (x=a, y=0), (x=0, y=b),               

(x=a, y=b)).  

Figure 11. shows the maximum deflection for different boundary conditions simply supported at ((x=0,y=0),       

(x=a, y=0), (x=0, y=b), (x=a, y=b)), clamped at ends of plate ((x=0,y=0), (x=a, y=0), (x=0, y=b), (x=a, y=b)), and cant-

lever plate (clamped at x=0 and free at x=a,y=0,b) subjected to sinusoidal ramp loading, solved by (F.E.M). From the 

results, the maximum deflection occurs for cantilever plate (clamped at x=0 and free at x=a, y=0,b). 

From Figures 10 and 11, shows that the maximum deflection occurred when the laminated plate supported as 

cantilever plate.   The following properties were used for simply supported laminated plates, in figure.12. forqo=10 N/cm
2
,  

to=0.0005 sec, simply supported laminated plates, J. N. Reddy [4], E2=2.1*10
6
 N/cm

2
, E1/E2=25, G12=G13=G23=0.5E2, 

ρ=1500 Kg/m
3
, ν=0.25, a=b=25 cm , h=5 cm. 

Figure 12.represents the variation of central transverse deflection with time for angle-ply and cross-ply laminated 

under sinusoidal Ramp loading solution by analytical and (F.E.M). The (0/90/…) laminated higher in magnitude than the 

(45/-45/…) laminated because at (θ=450/-450/…) the extension and bending stiffnesses A16, A26, D16 and D26 appear to 

have a significant effect while at (θ=00/900/…). 

The following properties were used for simply supported Laminated Plates, Figures. 13 to 17, A. A. Khdeir and 

Reddy [1], E1=130.8 Gpa, E2=10.6 Gpa, G13=G23=6 Gpa , G23=3.4 Gpa, ρ=1580 Kg/m
3
,ν=0.25, a=b=1 m, h=0.02 m, and 

qo=10 kN/m
2
 to=0.05 sec. 

Figure 13, shows the effect of the aspect ratio (a/b) on the deflection of the simply supported anti symmetric   

cross-ply laminated plates (a=1 m) subjected to sinusoidal Ramp loading solution by analytical and (F.E.M). From the 

results, the increase of (a/b) ratio increases the deflection. 

Figure 14, shows the effect of the (a/h) ratio on the deflection of the simply supported anti symmetric cross-ply 

laminated plates (a=1 m)subjected to sinusoidal sine loading solution by analytical and (F.E.M). From the results, the 

increase of (a/h) ratio increases the deflection of laminated plates. 

Figure 15.shows the effect of the number of layer of simply supported anti symmetric cross-ply laminated plates 

on the deflection of plate subjected to sinusoidal Pulse loading solution by analytical and (F.E.M). The central deflection of 

laminated plates decreases with increasing number of layers.  

Figure 16, shows the effect of the lamination angle (θ
0
) on the deflection of simply supported anti symmetric   

angle-ply laminated plates under sinusoidal ramp loading solution by analytical and (F.E.M). It is apparent from the results 

that the deflection decreases with increasing the angle of laminated. 

Figure 17, shows the effect of the number of layer of simply supported anti symmetric angle-ply laminated plates 

on the deflection of plate subjected to sinusoidal sine loading solution by analytical and (F.E.M). The central deflection of 

laminated plates decreases with increasing number of layers. 
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Stress Results 

The following properties were used for simply supported laminated plates, for analytical solutions, in figures      

18 to 23, qo=10 kN/m
2
, to=0.05 sec, A. A. Khdeir and Reddy [1], for simply supported, E1=130.8 Gpa, E2=10.6 

Gpa,G12=G13=6 Gpa, G23=3.4 Gpa, ρ=1580 Kg/m
3
, ν=0.28, a=b=1 m, h=0.02 m. 

Figure 18,  represents the stress-x in each layer, at the middle of layers, with time for four layers Anti symmetric 

cross-ply (0/90/0/…) laminated plates under uniformly ramp loading q(x,y,t)=qo t/to for qo=1 N/cm
2
 ,to=0.05 sec), at x=a/2, 

y=b/2. The maximum value of x is at layer-1 and the stress-x areantisymmetric about the middle plane.  

Figure 19, represents the stress-x in layer-1, at the middle of layer, with time for different number of layer for Anti 

symmetric cross-ply (0/90/0/…) laminated plates under uniformly ramp loading q (x,y,t)=qo t/to for qo=1 N/cm
2
,        

to=0.05 sec, at x=a/2, y=b/2. The value of x at layer-1 increase with increase the number of layers 

Figure 20, represents the effect of the lamination angle(θ
0
) on the x at layer-1 for four layers anti symmetric 

angle-ply  laminated plates under uniformly ramp loading, at x=a/2, y=b/2. From the results the x decreases with the 

increase of the angle of laminated to the 45
0
, the minimum value at 45

0
 and the maximum value at 0

o
. 

Figure 21, represents the comparison of stress-x with stress-y at layer-1 for four layers anti symmetric cross-ply 

laminated plates for difference E1/E2 under uniformly pulse loading, at x=a/2, y=b/2. From the results, stresses-x are more 

than stresses-y at E1/E21 and Stress-x equal stress-y for E1/E2=1.  

Figure 22. represents the comparison stress-x with stress-y at layer-1 for four layers anti symmetric cross-ply 

laminated plates for difference aspect ratio under uniformly ramp loading, at x=a/2, y=b/2. From the results, stresses-x are 

more than stresses-y. 

Figure 23.represents the stress-y in layer-1, at the middle of layer, with time for different number of layer for   

Anti symmetric cross-ply (0/90/0/…) laminated plates under uniformly sine loading q(x,y,t)=qo sin(t/to) for qo=1 N/cm
2
, 

to=0.05 sec, at x=a/2, y=b/2. The value of y at layer-1 decreases with the increase of the number of layers. 

Inter-Laminar Shear Stresses Results 

The case study discussed here is a laminated simple supported plate with dimensions and material properties used,  

A. A. Khdeir and Reddy [1]; using the first-order shear deformation theory (FSDT) and applying the suggested analytical 

solution, to evaluate the inter laminar shear stresses of laminated plates, 

E1=130.8 Gpa, E2=10.6 Gpa, G12=6 Gpa, =1580 kg/m
3
, 12=0.25,  

Length of plate=1 m, Width of plate=1 m, Thickness of plate= 0.02 m,  

Dynamic distributed load= 10 kN/m, Initial time of load= 0.05 sec 

Figure 24 shows the inter laminar shear stress xz for four layer antisymmetric cross-ply laminated plates 

subjected to uniformly ramp loading. The maximum shear stress xz occurs at the middle plane (0.417 Mpa). 

Figure 25 represents the effect of number of layers on the inter laminar shear stress xz between layers(1-2) for 

anti symmetric cross-ply laminated plates subjected to uniform sinusoidal loading. The shear stress xz decreases with 

increasing the number of layers. The decrease in xz are 20.5% and 20% for increasing layers from (4 to 6) and (6 to 8) 

respectively. 
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Figure 26 shows the inter laminar shear stress yz for four layer anti symmetric cross-ply laminated plates 

subjected to uniformly ramp loading. The maximum shear stress yz occurs at the middle plane.  

Figure 27 shows the effect of number of layer on the inter laminar shear stress yz between layers(1-2) for anti 

symmetric cross-ply laminated plates subjected to uniform sinusoidal loading. The shear stress yz decreases with 

increasing the number of layers. The decrease in yz are 63.8%, 33.6%, and 22.7% for increasing layers from (2 to 4),       

(4 to 6), and (6 to 8) respectively.   

Figure 28 represents the comparison xz with yz between layers for four layer anti symmetric cross-ply laminated 

plates subjected to uniformly ramp loading. The xz equal to yz at the middle plane and xz greater than yz with 74.4% 

between other layers. 

Figure 29 represents the effect of aspect ratio (a=1) on shear stress xz at middle plane for four layer anti 

symmetric cross-ply laminated plates subjected to uniformly pulse loading. In addition, the xz decreases with increasing 

the aspect ratio. The decrease in xz are 45.6% and 81.15% for increasing aspect ratio from (0.5 to1) and (1 to 2) 

respectively.  

Figure 30 represents the comparison of xz with yz at middle plane for different aspect ratio (a=1) for four layer 

anti symmetric cross-ply laminated plates subjected to uniformly pulse loading. The shear xz is greater than the yz at 

(a/b=0.5) and xz is less than yz at (a/b=2). The yz increases with increasing of the aspect ratio. 

 

         Figure 4: Central Deflection Due to         Figure 5: Central Deflection Due to           Figure 6: The Natural Frequency for 

             Sinusoidal Pulse Loading for                   Sinusoidal Pulse Loading for                   Simply-Supported Anti-Symmetric 

            Two Layer                                              Two Layer                                                  Cross-Ply Plates 

 

 

Figure 7                                                  Figure 8                                                      Figure 9 

Figure 7, 8, 9: The Natural Frequency for Simply-Supported Anti-Symmetric Angle-Ply Laminated Plates 
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   Figure 10: Central Deflection for Different    Figure 11: Maximum Deflection for Different      Figure 12: Central Deflection Due to 

Boundary Conditions for Cross-Ply                      Boundary Conditions for Cross-Ply                   Sinusoidal Ramp Loading (n=4)  

               Laminated Plates under Sinusoidal                       Laminated Plates under Sinusoidal 

                             Ramp Loading for N=4                                       Ramp Loading for N=4 

 

 

     Figure 13: Central Deflection Due to            Figure 14: Central Deflection Due to                      Figure 15: Central Deflection for 

              Sinusoidal Ramp Loading for (N=4)                       Sinusoidal Sine Loading for (N=4)                     Sinusoidal Pulse Load, (0/90/…) Plates 

 

             Figure 16: Central Deflection Due                       Figure 17: Central Deflection Due                        Figure 18: Stress-x in Each Layer Due 

                     to Sinusoidal Ramp Loading                                to Sinusoidal Sine Loading                                        to Uniform Ramp Loading 

                                      for (N=6)                                                    for (=45/-45/…) Plate                                                         for (N=4) 

 

 
          Figure 19: Stress-x in Layer-1 Due                         Figure 20: Stress-x at Layer-1                             Figure 21: Stress-x and Stress-y in 

                    to Uniform Ramp Loading                             Due to Uniform Ramp Loading                                Layer-1 Due to Uniform Pulse 

                                                                                                              for N=4                                                                   Loading for N=4 
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Figure 22: Stress-x and Stress-y in Layer-1      Figure 23: Stress-y in Layer-1 Due to              Figure 24: Inter Laminar Shear xz  Due 

            Due to Uniform Ramp Loading for N=4                   Due to Uniform Sine Loading                        to Uniform Ramp Loading for Cross-Ply 

                                                                                                                                                                                        Laminated Plates for N=4 

 

  

Figure 25: Inter Laminar Shear xz in                Figure 26: Inter Laminar Shear yz                               Figure 27: Inter Laminar Shear yz in 

Layers (1-2) Due to Uniform Sine                      Due to Uniform Ramp Load for                               Layers (1-2) Due to Uniform Sine 

              Loading for Cross-Ply Laminated Plates         Cross-Ply Laminated Plates for N=4                    Loading for Cross-Ply Laminated Plates 

 

 

         Figure 28: Inter Laminar Shear xz, yz   Due               Figure 29: Inter Laminar Shear xz Due           Figure 30: Inter Laminar Shear xz, yz Due 

           to Uniform Ramp Loading for Cross-Ply            to Uniform Pulse Loading for Cross-Ply          to Uniform Pulse Loading for Cross-Ply 

                      Laminated Plates for N=4                                   Laminated Plates for N=4                                  Laminated Plates for N=4 

 

CONCLUSIONS 

Some concluding observations from the investigation are given below: 

 The suggested analytical solution is a powerful tool for solving the differential equation and model analysis method 

for forced vibration, and, a dynamic stress and inter-laminar shear stress analysis of composite laminated plates. 

 The presented work showed that the increasing the numbers of layers for laminated, the angle of fibers, the modules 

of  elasticity E1 more than E2, the aspect ratio, the thickness of laminated decrease the deflection of laminated plates. 
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 The increasing  the aspect ratio or angle of fibers decreases the stress-x, and the increase of number of layer or the 

E1/E2 ratio increase the stress in direction x, and the increase of the number of layers or the E1/E2 ratio decreases 

the stress-y. 

 The inter laminar shear stresses xz and yz are maximum at the middle plane of laminated plates. And, the        

inter-laminar shear stress xz at middle plane decreases with increasing the aspect ratio or decreasing the (E1/E2) 

ratio of laminated plates. 
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